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Foreword 
Bill Churney, President, AIR Worldwide 
 

Climate change is a definitive challenge of our times, with strongly nonlinear, cascading 
impacts and many surprises in store. The Paris Agreement, a pledge signed by almost 
all nations to take action to limit global warming to less than 2˚C compared to pre-
industrial levels, identifies insurance as a key piece of the resilience solution. The 
industry is in a unique position to play a leadership role in assessing, communicating, 
and reducing climate change risk and developing new insurance products to meet the 
needs of the evolving market. At AIR and across the wider Verisk organization, we 
continue to make significant investments in our modeling capabilities and our technology 
infrastructure to be effective, future-ready partners in this crucial endeavor. 

To that end, AIR has worked with partners in the larger modeling community to create a 
new framework for modeling atmospheric perils under a future climate. Between June 
2020 and April 2021, we published a series of articles that explain AIR’s new framework, 
which is currently under development. This series has been compiled in this white paper 
and modified slightly for readability and currency. In it we discuss the evolution of and 
motivations for our catastrophe modeling techniques from our pioneering beginnings in 
1987 through to the present day and beyond, as well as their practical applications. 

Traditional catastrophe modeling—a discipline built on making sense of historical data—
has had to evolve to create views of extreme event risk for today’s climate and must 
continue to evolve to create views of this risk for the climate of tomorrow. The business 
benefits are substantial, starting with a view of risk for regional perils better rooted in 
science and a new quantification for diversification benefits, leading to better allocation 
of risk capital. In short, for those in the insurance industry, you can perform all the key 
functions you do today, but with greater confidence in how you will manage the 
uncertainties due to a changing climate."  

While we continue to adapt today’s models to offer pragmatic solutions to questions like 
"how will hurricane tracks change?" and "will storms move faster or slower?" our aim is 
to address the physics of atmospheric phenomena, especially at fine scales that are of 
interest to catastrophe modelers, in a more comprehensive way. 
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Part I: A Reckoning and a New 
Approach to Modeling Risk 
Jayanta Guin, Ph.D., Chief Research Officer, AIR Worldwide 
 

Many parallels have been drawn between the unfolding crises of COVID-19 and climate 
change. Of the lessons that can be learned from both, perhaps the most important is that 
science matters. The countries that have weathered the pandemic best—Singapore, 
Hong Kong, and South Korea, for example—did so because they understood the threat 
early on, having battled the SARS and MERS epidemics of 2003 and 2012, respectively. 
The scientific investments these countries made in the aftermath of those outbreaks 
better prepared them to deal with COVID-19. Had the rest of the world recognized the 
inevitability of a global pandemic and invested tens of billions of dollars at the right time, 
tens of trillions of dollars in economic damage might have been saved, not to mention 
the enormous societal damage that COVID-19 has inflicted. 

For some years, we’ve been at a tipping point where scientific investments in mitigating 
the impacts of climate change can still make a material difference. We know that the 
cost will be orders of magnitude higher the longer we delay meaningful action. I’m sure 
that I am not alone in hoping that our experience with COVID-19 will inspire the world to 
finally reckon with the implications of inaction on climate change and spur the necessary 
investments and fundamental policy changes at the global, sovereign, and societal 
levels. 

Here at AIR, we also feel a tipping point and are taking bold steps to fundamentally 
change the way we quantify insurance and other financial risks due to climate change. 
This part will describe our motivation and approach. 

A Brief History of Cat Modeling and Climate Change 
In the mid-1980s, AIR introduced a fundamental change in the way extreme event risk 
was quantified: the first stochastic hurricane model for the insurance industry, which 
initially failed to garner much attention. Hurricane activity had been below normal for the 
decade prior and the model’s suggestion that the industry could see losses several times 
larger than had ever been seen before was met with skepticism. Hurricane Hugo, which 
in 1989 produced the largest hurricane loss to date, opened some minds, but it wasn’t 
until Hurricane Andrew in 1992 that the industry fully embraced the new technology. 

At the time, few outside academia and government were concerned about global 
warming. Early generation cat models produced robust results by relying on decades of 
historical observation data (augmented by scientific expertise), assuming a stationary 

https://www.air-worldwide.com/models/tropical-cyclones/25-years-Later-What-If-Hurricane-Andrew-Strikes-Again/
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climate. The first-generation models, which were a novelty at that time, were used to 
create the very early sensitivity studies of changes in the frequency and severity of 
hurricanes, but it’s fair to say that it was not done in earnest. The first real concerns 
about climate change impacts on hurricanes were expressed after the record-breaking 
2005 Atlantic hurricane season when the National Hurricane Center had to use Greek 
letters for six storm names. (The next time Greek letters were used to name storms was 
during the historic 2020 Atlantic hurricane season, and we had to reach even deeper 
into the alphabet to name eight storms.) The year 2005 was also when Hurricane Katrina 
devastated New Orleans, and Hurricane Rita not only achieved the lowest central 
pressure on record in the Gulf but also the largest radius of maximum winds. In 
response, catastrophe modelers introduced the first "climate conditioned" catalogs a 
year later.  

Still, in the mid-2000s climate change largely remained an afterthought to the insurance 
and cat modeling industries. The 10 years with no single Florida hurricane landfall that 
followed—often referred to as the hurricane "drought"—helped push the issue to the 
background yet again (despite the possibility that climate change may have been 
responsible for the drought). For many years, the interest emanating from the insurance 
industry was sporadic and mostly reactive to individual events. 

Today, large-loss weather events are almost guaranteed to produce headlines attributing 
them to climate change. And thanks to the relatively new science of event attribution, 
there is growing justification in doing so. On such occasions we can see with our own 
eyes the effects of ever-increasing greenhouse gases. Memories are short, however, 
and the effects remain largely invisible—except, perhaps, for those areas of the coast 
that are experiencing more and more frequent sunny day flooding. For most of us, 
climate change is a long, drawn-out catastrophe unfolding just beyond our line of sight. 

This presents a fundamental challenge to maintaining focus on the issue. But all of us, 
as stakeholders, must overcome the challenge and recognize that we are at another 
inflection point or "Hurricane Andrew moment," although a far more momentous one. 
Whether climate change is truly an "existential" threat may still be debated, but its costs, 
which we are already beginning to experience and which will only increase over time, 
can no longer be ignored. It is no longer acceptable to think about climate change only 
after an extreme event occurs. And we cannot allow market pricing cycles, like the soft 
market that, in part, resulted from the 10-year hurricane drought, to lower our guard or 
commitment. 

What Needs to Be Done? 
We must be guided by the science in our modeling of climate change risk, not rhetoric or 
headlines. We must recognize the inherent uncertainties in projections of future climate 
states and navigate them using rigorous analytics. We must thoughtfully explore the 

https://www.air-worldwide.com/publications/air-currents/2020/2020s-hurricane-season-record-breaking-throughout/
https://www.air-worldwide.com/publications/air-currents/2020/the-new-science-of-event-attribution/
https://www.air-worldwide.com/blog/posts/2018/6/why-inaction-on-sunny-day-flooding-is-unacceptable/
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known knowns and the known unknowns, and we must at least imagine and speculate 
about the unknown unknowns. 

It is time for us, as model developers, to go beyond a piecemeal approach to addressing 
climate change, beyond incremental updates or extensions to existing models. As model 
developers, we must take the best-of-breed science coming out of academia and leading 
research institutions and translate it into fit-for-business-purpose climate change models 
and analytics. In a very real sense, we should be thinking of climate change as a new 
peril, and the models must be capable of answering different kinds of questions. 

What Are the Questions that Only a New Breed of 
Climate Models Can Answer? 
Since the introduction of the first cat model, we’ve been trying to answer questions such 
as, "What is the probability of a Category 4 hurricane making landfall in Texas?" Today, 
the relevant questions are much more complex, for example: "What is the probability that 
a Category 4 hurricane will make landfall in Texas, stall over Houston, and drop more 
than 50 inches of rain?" 

In fact, AIR’s existing physical-statistical-hybrid approach can get us quite close to an 
answer. What our existing approach cannot answer with confidence is, "What is the 
probability of that same scenario happening over Mobile, Alabama?" Similarly, we might 
speculate, "We saw Category 5 Hurricane Dorian stall over the Bahamas; what is the 
probability of that happening over southeast Florida?" 

The only way we can begin to answer these questions is by modeling the physics that 
give rise to such occurrences. We must better understand how small-scale features in 
the atmosphere can have disproportionate impacts on large-scale planetary features 
(and vice versa) and how these non-linearities and teleconnections between scales and 
across distances drive weather extremes. Although the quality and detail of reanalysis 
data sets for the last 40 years has improved by leaps and bounds (the latest holds more 
than 500TB of data), they can only tell us what has happened historically. They cannot 
answer the question of where and how frequently a break in a planetary wave will set up 
a large stationary high, such as the one that caused Hurricane Sandy to make its 
notorious (and anomalous) westward turn into northern New Jersey; they cannot tell us 
the frequency of anomalous jet-stream behavior that allows the polar vortex to split and 
sag southward, bringing frigid temperatures to North America for long stretches; or 
omega blocks that can bring tropical temperatures to Europe and Greenland, as one did 
in the summer of 2019. Even if we spatially perturb the reanalysis data to create new 
scenarios, we do so with many unknowns, leaving us with lower levels of confidence in 
(probably biased) results that no longer consistently and coherently represent the 
dynamical nature of the atmosphere. And we are unlikely to produce simulated events 
that present surprises for us—surprises that we know a changing climate will bring. 

https://www.air-worldwide.com/blog/posts/2019/4/why-changing-hurricane-michael-to-category-5-matters/
https://www.air-worldwide.com/blog/posts/2019/4/why-changing-hurricane-michael-to-category-5-matters/
https://www.air-worldwide.com/blog/posts/2018/3/can-global-warming-cause-more-wintry-conditions/
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Why Is the Problem So Difficult to Solve? 
At its simplest, the answer to this question is clear: The atmosphere is chaotic. Weather, 
which refers to short-term atmospheric conditions experienced at a location over the 
course of hours or days, is highly variable. The reliability of weather forecasts falls off 
after about a week, if that long. Climate, on the other hand, refers to the statistics of 
weather over decades, often over 30 or 40 years. While the climate tends to change 
quite slowly, we do experience shorter-term fluctuations; El Niño Southern Oscillation 
(ENSO) and the North Atlantic Oscillation (NAO) are familiar examples of features in our 
ocean-atmosphere system that drive variability. When discussing "climate variability," 
we're describing natural (i.e., not man-made) processes that affect the atmosphere. 
When we introduce anthropogenic climate change (caused by greenhouse gases), it 
becomes quite challenging to distinguish its signal from climate’s natural variability, 
particularly when it comes to short-term weather phenomena such as individual storms. 

The task for the catastrophe model developer is to build large catalogs representing 
ensembles of future climate states at different timescales. In theory, we might create 
such an ensemble using global circulation models (GCMs) which have become quite 
powerful. But while some very recent GCMs are capable of running at high enough 
resolution to explicitly simulate small-scale features such as hurricanes, the 
computational cost of running them at that resolution long enough to generate tens of 
thousands of years of simulated hurricane activity remains impractical. Furthermore, no 
current GCM attempts to capture all the smaller-scale atmospheric processes and their 
interactions that give rise to the full range of extreme weather events. Those processes 
that are not resolved are parameterized, which can introduce additional bias. Careful 
analyses of GCM output in the recent climate reveal their limitations in accurately 
representing the statistics of some of the larger-scale dynamics in the atmosphere, 
which we know often contribute to the conditions leading to the occurrence of an 
extreme event. 

But this leads to another question: If we successfully build new models suitable for 
different timescales, how do we validate them? We know that history is unlikely to be 
representative of the future, so what does validation of a future climate state really 
mean? In fact, validation will necessarily take on a new meaning. The key is to break the 
problem into smaller constituent parts and develop an approach whereby we can 
validate the recent past and then employ those features of future model projections in 
which we have more confidence. For example, the impact of climate change on sea level 
rise, Arctic amplification, and temperature and precipitation patterns are better 
understood than the impacts of climate change on tornado activity. But if we can better 
understand the atmospheric conditions that drive tornado activity, we will have more 
confidence in what the models tell us about where and how frequently those conditions 
might arise in the future. 

https://www.air-worldwide.com/blog/posts/2019/4/arctic-amplification-a-very-bad-positive-feedback-loop/
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At AIR, we believe we’ve found a solution, in which transparency and staying true to the 
science are key; we cannot allow ourselves to read more into the data than is there or 
overextend the state of science. We should not be afraid of getting something wrong, but 
we should be prepared to incorporate new knowledge as it becomes available and 
update our view of the risk accordingly. 

So What Is AIR’s Solution? 
We see an opportunity to blend our traditional hybrid, physical, and statistical 
approaches with a new set of tools that come from the world of artificial intelligence—
specifically, machine learning. Our approach, which represents the efforts not only of 
AIR scientists but of partnerships with research institutions at MIT in the U.S., 
Magdeburg University in Germany, and the University of Utrecht in The Netherlands, 
combines a novel approach of de-biasing large-scale features in a computationally fast 
GCM, with analysis of fine-scale features from historical data to learn the "rules" of 
atmospheric behavior that produce weather extremes. Million-year catalogs are 
suddenly possible—global catalogs that capture all types of dependencies, from global 
teleconnections to local correlations across all weather-related perils and across all 
regions. 

The result will be a new framework for climate risk modeling, one that is deeply rooted in 
high quality data and deep domain knowledge of weather and climate physics. The 
framework will allow us to answer not only today’s new climate questions, but also 
tomorrow’s. The business benefits are substantial, starting with a view of risk for regional 
perils better rooted in science and a new quantification for diversification benefits, 
leading to better allocation of risk capital. In short, for those in the insurance industry, 
you can perform all the key functions you do today, but with greater confidence in how 
you will manage the uncertainties due to a changing climate. 

AIR undertook this important project starting in 2018, but there is still much to do on this 
multi-year journey—a journey that requires patience, tenacity, and commitment. This 
paper’s topics range from the fundamentals of climate and climate variability, to what 
climate models can and cannot do, to the latest thinking on the contributions of machine 
learning techniques, to what insights we might gain into the potential impacts of climate 
change on the locations, frequencies, and intensities of extreme events around the 
globe. 

Also critical is your engagement and support to drive innovation in climate risk analytics, 
which the industry will need for the future. The modeling approach represents a long-
term, sustainable strategy for managing climate change risk for the coming decades. In 
the meantime, we are executing on shorter-term strategies that include increasing our 
efforts on how we evaluate the impact of climate change on each peril region, 
development of climate sensitivity event-ensembles, and developing capability in our 
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products so that you can do what-if scenarios and establish your own view of climate 
risk. Now that this part has provided the motivation for our investment, the next parts will 
provide the details. 

Part II: The Importance of 
Planetary-Scale Motions for 
Modeling Local Weather Extremes 
Peter Sousounis, Ph.D., VP and Director of Climate Change Research, AIR 
Worldwide 
 

In Part I, we discussed the importance of being able to model not only the physics of a 
weather system itself, but the physics of the larger, planetary-scale circulations that 
operate on longer time scales—the climate dynamics. For example, to better model the 
risk of a Hurricane Harvey-like event occurring in Miami rather than Houston, it is 
important to also be able to model the physics in a place such as, say, Manhattan. 

The distinction between weather and climate has been stated in the following ways: 
Climate is what you expect, weather is what you get; weather is your mood, climate is 
your personality; climate lasts and weather doesn’t. They all convey the same 
message—that climate is an amalgamation of weather over a long period of time. But 
climate is more than that. Understanding what climate really is from an atmospheric 
dynamics perspective is critical to improving catastrophe models. That is what this part is 
about, how climate is inherently the cause of weather and weather variability, and the 
real driver behind weather extremes—not the end result of weather. At the same time, it 
is important to understand that climate and weather are inextricably connected. 

Climate’s Large- and Small-Scale Atmospheric 
Motions and the Weather They Generate 
The climate that any given region on Earth experiences is determined largely by its 
latitude. But latitude means more than just how far away from the equator a location is 
and how directly the sun’s rays reach the Earth’s surface. Latitude also influences 
whether prevailing surface winds blow from the east (easterlies) or from the west 
(westerlies) and how strong they are. At midlatitudes, which are typically defined by the 
range of 30° to 60° north or south of the equator, prevailing winds are westerly (see F). 
These westerlies are the result of southerly winds in the Northern Hemisphere 
associated with the Ferrel cell—the middle cell of three pole-to-equator cells and 

https://www.britannica.com/science/Ferrel-cell
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responsible for equalizing heat imbalances—being deflected eastward by the Earth’s 
rotation. In other words, in the Ferrel cell, air flows poleward and eastward near the 
surface and equatorward and westward at higher altitudes; this movement is the reverse 
of the airflow in the Hadley cell, another of the pole-to-equator cells. 

At upper levels, these westerlies are guided by the polar jet stream. The jet stream and 
the six to eight large-scale waves along it owe their existence to the pole-to-equator 
temperature difference, or gradient, as well as to the Earth’s rotation. When the 
temperature gradient is large, the jet stream is faster and straighter; when the gradient is 
smaller, the jet stream slows and begins to meander, becoming wavier. And not only 
does the air move through the wavy pattern, the waves themselves move. 

 
Figure 1. Locations and extents of meridional cells and polar front (jet) mentioned in text.  

Adapted from futurelearn.com. 

 

https://www.britannica.com/science/Hadley-cell
https://www.futurelearn.com/courses/come-rain-or-shine/0/steps/15237
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Rossby Waves 
These waves are known as Rossby 
waves (see box) after the meteorologist 
Carl Gustaf Rossby who discovered them 
in the 1930s: 

• Very long waves the size of 
continents can move slowly 
eastward or westward at mid-
latitudes—or remain stationary; 
these long waves can therefore 
influence weather patterns that 
last an entire season or longer 

• Shorter waves—with wavelengths 
the size of low-pressure systems 
such as winter storms—do move 
from west to east 

• In the tropics, waves of all 
wavelengths move east to west 

The movement of these waves alone 
accounts for much of the weather 
variability for a given region. Storms 
approach; clouds, wind, and precipitation 
develop; skies clear. It’s a typical winter 
weather pattern in the midlatitudes.  

But the waves don’t move in isolation; 
they interact, non-linearly at times and 
through positive feedback 
mechanisms. Non-linearity means that as 
waves phase together (e.g., the ridges or 
troughs of the waves align) the resulting 
amplitude can be greater than the sum of 
the individual wave amplitudes. 
Furthermore, what happens at the Earth’s 
surface can greatly influence the motions 
above and vice-versa. 

Rossby Waves 
Any given parcel of air has two kinds of 
spin or vorticity. One is the kind we see, like 
air rotating counter-clockwise in the 
Northern Hemisphere around a hurricane, 
called relative vorticity, and planetary spin, 
which is like potential spin that we can’t 
see. Planetary vorticity is zero at the 
equator and largest at the poles. As air 
moves, it has to conserve the total or 
absolute vorticity it started with. As air 
moves northward from Position 1, its 
relative vorticity decreases as it gains 
planetary vorticity. This causes the air to 
begin to rotate clockwise more, which 
results in the parcel eventually moving 
southward at Position 2 as it is moving 
eastward. As it overshoots the latitude it 
started at, the parcel now loses planetary 
vorticity but gains relative vorticity. This 
eventually causes the parcel to move back 
north again at Position 3. Thus, a wavelike 
motion is traced out by the parcel—forming 
a Rossby wave (green ribbon). The wave 
itself can move slowly in either direction or 
remain stationary, depending on its 
wavelength and how fast wind moves 
through the wave. 

 
Figure 2. Vorticity and Rossby waves 
(Adapted from homework.uoregon.edu) 
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Atmospheric Blocks 
Sometimes, these interactions can cause an atmospheric block—one that prevents 
weather systems from proceeding along their "preferred" path. An omega block is one 
example. It is so called because the flow of air around the resulting Low-High-Low or L-
H-L pressure pattern resembles the Greek letter (capital) omega Ω. The rightmost panel 
in Figure 3 illustrates such a block (designated by H) preventing a low-pressure system 
(designated by L) from moving directly eastward. Instead, the low is forced to go 
northward around the block. 

 
Figure 3. An example of Rossby wave evolution over a three-day period. Long Rossby waves 
amplify as they migrate very slowly eastward (left panel); a smaller wave of low pressure (L) 
moves more quickly through the Rossby wave configuration (middle panel); an example of what 
a block looks like and what it does to the path of approaching weather systems (right panel). 
(Adapted from wikipedia.org.) 

Blocks can develop quickly, within a matter of days, but can last for weeks to months. 
Although they typically form in spring and fall as residual cold or warm air is injected 
equator- or poleward, respectively, blocks are most impactful in winter and summer 
because temperatures are more extreme then. Blocks can also affect hurricane tracks; 
they were influential for Hurricane Sandy’s famous left hook into New Jersey in 2012 and 
for Hurricane Harvey’s stall over Houston in 2017. 

Extreme Events 
The formation and dissipation of blocks are difficult to forecast and they can be self-
sustaining. A good example is what happened over Australia in late 2019, just ahead of 
the 2019-20 bushfires, which destroyed 10 million hectares (~25 million acres) and 
destroyed more than 2,600 homes, mainly in Australia Capital Territory, New South 
Wales, Queensland, South Australia, Tasmania, and Victoria. Earlier in the summer of 
2019, one of the strongest positive phases of the Indian Ocean Dipole developed to 
cause a drought in western Australia. Less rain meant fewer clouds, enabling more 
sunlight to heat the ground. As surface temperatures rose, the wind pattern aloft 
responded accordingly—causing a southward bulge in the steering currents so that any 
rain systems approaching from the west were diverted to the south of the continent. That 
allowed yet more sunlight to reach the ground, perpetuating the pattern. An intense 

https://en.wikipedia.org/wiki/Rossby_wave
https://www.air-worldwide.com/blog/posts/2020/1/how-climate-change-may-have-influenced-the-2019-20-australia-bushfires/
https://www.bbc.com/news/science-environment-50602971#:%7E:text=%22A%20positive%20IOD%20means%20we,large%20parts%20of%20the%20country.%22
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sudden stratospheric warming episode further exacerbated atmospheric conditions for 
bushfire. 

What happened over Australia during their springtime is an example of an extreme 
climate pattern: complex and large in scale, it influenced weather and weather-related 
phenomena for months. To accurately model extreme weather phenomena, such as the 
2019-20 Australia bushfires, one has to be able to model extreme weather patterns and 
the dynamics that cause them. 

Another way blocks, or stagnant weather patterns, can form is when Rossby waves get 
trapped, stall, and amplify. Some recent studies have suggested a link to climate 
change, that is, as the pole-to-equator temperature difference decreases, the trapping 
and resonance of waves will occur more frequently. Not only drought, as in the case of 
the bushfires, but extreme flooding can also occur, as wet weather systems follow one 
after another over the same region, like railroad cars on a train track. When these tracks 
set up from southwest to northeast across oceans, atmospheric rivers can develop to 
transport up to 15 times more moisture than the Mississippi River can—to the west 
portions of continents. These high-amplitude, nearly stationary (in time) patterns have 
been used to explain the devastating 2003 heat wave in Europe that claimed 70,000 
lives, as well as more recent  events such as the 2010 Pakistan flood/Russian heat 
wave, the 2011 Texas drought, the 2013 European floods, the 2015 California wildfires, 
and the 2016 Alberta wildfires. A prolonged atmospheric river event in mid-December 
2010 fueled strong winter storms that battered the U.S. West Coast with up to two feet of 
rain and provided 75% of the Sierra Nevada’s annual snowpack before winter even 
started. These are all examples of extreme climate patterns—extreme in the sense that, 
historically, they haven’t happened very often and they resulted in significant 
consequences. Global climate models suggest, however, that the sort of resonance, or 
increased amplitude, that gives rise to such events will happen 50% more often. 

While altered (e.g., blocked) flow patterns can lead to extreme weather events reaching 
areas that don’t normally experience them, the intensity of the weather event can also 
reach unprecedented levels. As previously noted, as waves interact, they can resonate 
and grow in amplitude. Thus, a short wave moving through a long wave can grow in 
intensity dramatically, or explosively, especially as clouds are forming and releasing 
latent heat. The term explosive deepening applies to a low-pressure system whose 
central pressure decreases by as much as 24 mb in 24 hours. Such "bomb" cyclones 
are not new (the term was coined back in the 1970s), but they may be occurring more 
frequently because climate change is allowing more moisture in the atmosphere and 
more latent heating to occur. 

https://www.air-worldwide.com/blog/posts/2020/4/climate-change-and-a-wavier-jet-stream/
https://www.air-worldwide.com/blog/posts/2020/4/climate-change-and-a-wavier-jet-stream/
https://www.air-worldwide.com/blog/posts/2018/7/why-the-central-european-floods-of-2013-were-so-devastating/
https://www.air-worldwide.com/blog/posts/2018/1/what-does-bombogenesis-do-to-a-winter-storm/
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Ocean-Atmosphere Interactions Add Complexity: The 
El Niño/La Niña Southern Oscillation (ENSO) Example 
So far, we've discussed how atmospheric motions on different scales can interact to 
yield extreme weather. The long wave patterns themselves can be influenced by other 
dynamics that involve both the atmosphere and the ocean. Some of these dynamics 
repeat themselves with some frequency, which has led to the identification of a large 
number of climate signals, or climate factors. They are so called because they influence 
atmospheric motions on large (continental) scales and may do so either continuously or 
with some quasi-periodicity. The climate signals can also interact with weather. 

The interaction of climate and weather is demonstrated most readily by considering a 
familiar climate phenomenon. The El Niño Southern Oscillation (ENSO) is an 
atmospheric-oceanic phenomenon that affects weather worldwide. The Southern 
Oscillation is the atmospheric part, but the oceanic part (El Niño) is what gets more 
attention. ENSO manifests on a time scale of three to seven years, meaning that in that 
period at least one weak El Niño and its counterpart La Niña will probably have affected 
Earth. The strength of each phase is typically measured by how anomalously warm (El 
Niño) or cool (La Niña) a region of the central-to-eastern tropical Pacific is over a three-
month period. 

During an El Niño for example, the warm water that is normally largely confined to the 
western Pacific shifts eastward, sometimes all the way to the west coast of South 
America. (The phenomenon got its name, which means "the boy" or "the Christ Child" in 
English, owing to its appearance being most noticeable at Christmastime.) The eastward 
transport of warm water implies that the ocean gets involved. It also implies that the 
normally reliable easterly trade winds, which are what typically hold the warm water in 
place in the western Pacific, relax or even change direction. The absence of offshore 
winds along the west coast of Peru during El Niños can halt the fishing industry there; 
the absence of offshore winds means no upwelling of cooler water, no bait fish, and 
hence no big fish. 

But the water doesn’t just shift eastward on its own. Intense thunderstorm activity 
(weather) in the western Pacific is the precursor to an El Niño. This intense convection 
triggers the eastward transport of warm water just below the surface along the equator. 
Once the warm water reaches Peru, it spreads northward and southward along the west 
coasts of the Americas. El Niños have significant impacts on tropical cyclone activity, 
severe thunderstorm activity, and overall precipitation patterns over much of the world. 

For example, during an El Niño, hurricane activity is typically reduced over the north 
Atlantic because of increased vertical wind shear and increased over the eastern and 
western Pacific owing to a larger expanse of warm ocean water. Because warm water is 
the fuel for not just tropical cyclones but precipitating weather systems in general, the 
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west coasts of the Americas typically get increased rainfall and even flooding conditions. 
In contrast, much of Asia as well as eastern Australia can experience drought conditions. 
Food stocks can decrease and famines start in eastern Africa as crops start to fail, 
potentially leading to unrest. La Niñas can also bring such spatially correlated weather 
but in a different way. Atlantic hurricane activity is typically above normal, for example, 
while the Pacific tropical cyclone seasons are below normal. Heavy rains characterize 
eastern Asia, especially. 

Climate in the Context of the Catastrophe Model 
The periodicity of ENSO suggests that an appropriate time scale with which to define 
climate should allow for at least several such events. Indeed, the standard length over 
which weather is averaged to reflect climate is 30 years. While this length of time might 
at first glance suggest the appropriate data vintage for developing catastrophe models, 
one must consider that other climate factors, such as the Atlantic Multidecadal 
Oscillation (AMO) and the Pacific Decadal Oscillation (PDO), have even longer time 
scales. The former has a period of about 44 years, although the last full AMO cycle 
began in 1962 with a negative phase and the complementing positive phase that started 
in 1995 has not yet been completed. Despite the "decadal" in its name, the PDO is 
typically associated with a 50-year cycle. None of these numbers, of course, is as 
precise as suggested here; there is a natural variability in the periodicity of these climate 
signals. 

Perhaps, then, 60 years is a sufficiently long period with which to define climate? 
Probably not, considering that climate signals interact. The convective activity in the 
western Pacific that can trigger ENSO is caused by the Madden Julien Oscillation 
(MJO), which operates on a time scale of 30 to 60 days. In fact, it’s quite possible that a 
particular weather regime that a climate factor combination might generate naturally has 
not yet been observed. For a catastrophe model, the appropriate record of historical data 
will depend on the variable of interest. This also speaks to the reason why the last few 
years of extremes may not be a predictor of what is to come: short-term trends can be 
misleading. 

Pulling the question of climate time scale in a completely different direction is the 
existence of anthropogenically induced climate change. The fact that the Earth’s 
temperature has increased by more than 1° Celsius in just the last 70 years as a result 
of increased greenhouse gases means we cannot just take data over a very long period 
to try to account for all possible natural climate interactions without somehow also 
accounting for climate change because not only is climate itself complicated, the very 
definition of it is too. 
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What Can General Circulation Models (GCMs) Do? 
The climate’s atmospheric and oceanic motions and the extreme weather they can 
generate—specific combinations of which may have yet to occur—are complex and 
interconnected. The factoring in of climate change as it evolves makes for a convincing 
case that building catastrophe models from historical data alone, or even the statistics of 
that data, may leave gaps that affect a model’s ability to appropriately represent extreme 
weather events, if not in the near future then certainly in the more distant future. How 
might the climate factors of most importance to the catastrophe modeler, for example, be 
altered by climate change? 

One way to fill such gaps is through the more explicit use of general circulation models 
(GCMs) to model the actual physics of Earth’s climate system and thereby account for 
outcomes that have not yet been observed—such as a Hurricane Harvey stalling over 
Miami, or even Manhattan. To see where and how far GCMs can take us, we must 
examine in some detail what such models can and cannot do, and why, which is what 
will be discussed in Part III. 

Part III: Anatomy of a Climate 
Model 
Henk Dijkstra, Ph.D., Professor of Dynamical Oceanography, Institute for Marine 
and Atmospheric research, Utrecht; and Director, Centre for Complex Systems 
Studies, Department of Physics, Utrecht University 

Boyko Dodov, Ph.D., Vice President and Director, AIR Worldwide 
 

As discussed in Part II, planetary-scale atmospheric and oceanic motions are the drivers 
of local weather extremes—the very extremes that result in large financial losses. To 
understand the dynamics between weather and climate, and how they may be altered as 
a result of climate change, scientists employ climate models, which numerically simulate 
planetary circulations and their interactions at various scales. 

The first mathematical models of the atmosphere were developed decades ago. In 1904 
physicist and meteorologist Vilhelm Bjerknes proposed that the principles of fluid 
dynamics could be used to predict atmospheric flows and hence the weather. In 1950 
the first successful numerical weather prediction was made by a team under the 
leadership of the mathematician and physicist John von Neumann. The first 24-hour 
forecast took nearly an entire day to compute. 
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Today, a range of numerical models is available for the forecasting of weather and 
climate phenomena, each of which has been developed for specific forecasting or 
research purposes; they can differ in terms of spatial domain and resolution as well as 
the time period for which the forecast is valid. Numerical models are based on primitive 
equations, which include terms for the conservation of mass; a form of the  
Navier-Stokes equations governing fluid flow; and thermodynamic terms. Examples of 
numerical models include numerical weather prediction (NWP) models and global (and 
regional) general circulation models (GCM). 

NWP models are atmospheric models that currently have a horizontal resolution of about 
10 km; they may be regional or global in scope. With these models, only simulations 
over a short period of time (typically 14 days) can be performed. Because of the chaotic 
nature of atmospheric flows, the forecasting capability decreases dramatically beyond a 
two-week period. Furthermore, to produce a reasonably accurate forecast, using 
accurate initial conditions are important. These initial conditions represent a "known 
state" of the atmosphere and are constructed using observation data available through 
data assimilation techniques. 

To account for uncertainty in the initial 
conditions, many simulations (typically 
50) with different initial conditions are 
performed to create a statistical 
forecasting product (Figure 3). From 
this product, the probability of specific 
extreme events, such as severe 
thunderstorms, hurricanes, heat waves, 
and extreme precipitation, can be 
assessed. The forecasts that result 
from this process allow people, 
governments, and organizations to not 
only plan daily activities but also prepare for disasters, up to 14 days in advance. 

The Promise of General Circulation Models 
High-resolution NWP models are used primarily for weather forecasting. They cannot be 
used to make climate predictions on longer (seasonal to decadal) time scales with 
accuracy, not only because their resolution would require vast computing resources to 
do so, but also because they are not coupled with an ocean model. As we learned from 
Part II, weather patterns can be influenced by dynamics that involve both the 
atmosphere and ocean. The El Niño-Southern Oscillation (ENSO) is just one example of 
an atmospheric-oceanic phenomenon that affects weather—including tropical cyclone 
activity—worldwide. Enter the general circulation model, or GCM. 

 
Figure 4. Principle of initial condition ensemble 
simulations. By choosing slightly different sets 
of initial conditions, equally likely realizations 
of a climate variable (such as temperature) are 
created. 

https://www.grc.nasa.gov/www/k-12/airplane/nseqs.html
https://en.wikipedia.org/wiki/Data_assimilation
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GCMs attempt to simulate a coarse-grained approximation of Earth’s entire climate 
system. The most complex and resource-intensive component of a GCM is the 
atmospheric module, which uses the primitive equations to simulate the evolution of 
wind direction, wind speed, temperature, humidity, and atmospheric pressure, hereafter 
denoted as U, V, T, Q, and P, respectively. GCMs also include equations describing the 
oceanic circulation: how it transports heat and how the ocean exchanges heat and 
moisture with the atmosphere. Another important component is a land surface model 
that describes how vegetation, soil, and snow or ice cover exchange energy and 
moisture with the atmosphere. And yet another component captures the interactions 
between the atmosphere and the cryosphere (sea and land ice). 

To solve the equations on a computer, GCMs divide the atmosphere, oceans, and land 
into a three-dimensional (3-D) grid (Figure 5). The equations are then numerically 
evaluated in each grid cell at successive time steps throughout the simulation period. 
The number of cells in the grid determines the model’s resolution, or granularity. Each 
grid cell is characterized by the average value of each variable; therefore each cell 
effectively has a uniform velocity, temperature, etc. 

While the most recent, state-of-the-art 
atmospheric GCMs might have a 
horizontal resolution of 25 km, the more 
typical GCM used for seasonal 
predictions and El Niño forecasting, for 
example, will have a horizontal 
resolution of about 100 km; a vertical 
resolution of about 1 km; and a time-
stepping resolution of about 10 to 30 
minutes. The horizontal resolution of the 
atmospheric component of most GCMs 
included in the World Climate Research 
Programme's Coupled Model 
Intercomparison Project (CMIP) is ~100 
km, or 10 times coarser/lower than 
current NWP models. If they were to 
operate at a more granular/higher 
resolution, GCMs would represent some 
processes with more realism; however, 
the computational time required to do the calculations would increase substantially. For 
example, a doubling of resolution requires about 10 times more computing power 
because the time step must be halved; not only are there four times as many grid points 
to evaluate, but twice as many time steps are also required for the model to get to the 
same point in the future. Thus for most of the world’s climate modeling centers, modeling 
a spatial resolution beyond 0.5 degrees (60 km at the equator) is not practicably feasible 
at present. The choice of model resolution is driven both by the available computer 

 
Figure 5. Schematic of a General Circulation 
Model (Source: Climate Information.) 
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resources and by what physical, chemical, and biological processes are relevant to the 
model’s unique purpose, which dictates the length and number of simulations to be 
conducted. 

The part of a GCM that solves the primitive equations for U, V, T, Q, and P is called the 
dynamical core. Climate processes represented by this dynamical core are referred to as 
being "resolved" by the model. But with uniform values within grid cells available, the 
typical GCM is too coarse to solve important small-scale processes, including those that 
govern the extreme weather events of interest to catastrophe modelers, such as 
thunderstorms, tornadoes, and extreme rainfall events. Such "unresolved" sub-grid 
processes are therefore parameterized—and the parameterization formulas employed 
(which vary with the scientist or scientists involved) introduce uncertainty and potential 
bias. The issue of uncertainty and bias and how to reduce it in the context of catastrophe 
modeling will be discussed in further detail in Part IV. 

GCMs and Climate Projections 
Today, GCMs (sometimes combined with higher-resolution regional climate models for 
region-specific results) are providing forecasts of Earth’s climate up to the end of this 
century. Uncertainty in the initial conditions doesn’t play an important role here because 
the effect of model error dominates. Therefore, in addition to ensembles with different 
initial conditions, ensembles with different model parameters are used to evaluate the 
model error. Because many different GCMs are used, each with their specific biases, a 
multi-model analysis also provides a measure of uncertainty in the projections. 

It’s important to note that, despite the inherent model errors and biases, GCMs still do a 
reasonably good job of simulating general climate behavior: storms develop and move in 
realistic ways; temperatures change according to time of day and day of year in realistic 
ways; and precipitation falls where and when it should—generally. But the details—how 
intense storms will become, exactly where they will track or stall, and how heavy the 
precipitation will be—are not captured well enough to satisfy the catastrophe modeler. 

In addition to model error, a major source of uncertainty when making climate 
projections over decades is the radiative forcing (the difference between energy in the 
form of sunlight absorbed by Earth and the energy radiated, or reflected, back into 
space) induced by anthropogenic greenhouse gas (GHG) emissions. GHG emissions 
depend largely on the usage of fossil fuels and thus human behavior. To cope with this 
uncertainty, the climate research community makes use of a suite of several emissions 
scenarios called Representative Concentration Pathways, or RCPs. Each RCP 
represents a potential trajectory of atmospheric GHG concentrations over the coming 
decades, culminating in a specific excess radiative forcing at the year 2100. The  
RCP 8.5 scenario, for example, assumes high and growing emissions that will lead to  

https://www.air-worldwide.com/blog/posts/2019/11/climate-change-rcps-and-the-emissions-gap/
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an 8.5 W/m2 extra radiative forcing in the year 2100 and an average increase in surface 
temperatures of between 2.6°C and 4.8°C (at the 90% confidence level). 

In the CMIP5 (CMIP Phase 5) projects undertaken in support of the Intergovernmental 
Panel on Climate Change (IPCC), the participating GCMs perform a set of predefined 
simulations resulting in an ensemble of climate projections. Each model first performs a 
century-long simulation under preindustrial initial conditions, which consist of prescribed 
solar forcing, aerosol forcing, and greenhouse gas forcing as of the year 1850. This 
serves as a control simulation. At the end of the control simulation, a so-called historical 
simulation is performed from 1850 to (usually) 2005. Next, the simulation is continued 
under one of the RCP scenarios. 

For many models, more than one simulation is performed by starting the historical 
simulation from a different year than the one for the start of the control simulation. The 
reason being that, although the atmosphere responds quickly to various forcing conditions, 
the ocean takes much longer; thus at different years in the control simulation the ocean 
will be very different. These efforts then lead to probabilistic projections of, for example, 
the global mean surface temperature up to the year 2100 (Figure 6) for the different 
RCPs. Note that due to the uncertainties in both models and forcing, the behavior of the 
actual climate system can deviate from these results substantially, and even be outside 
the estimated range of possibilities illustrated by the shading in Figure 6. 

 
Figure 6. Global mean surface temperature as projected by the CMIP5 model suite, for different 
RCP scenarios. (Source: Source: IPCC, 2013) 

In the realm of climate science, the principal goal of GCMs has been to forecast changes 
in average surface (land and ocean) temperatures. To determine whether the 
occurrence of extreme events will change over the next decades, large ensembles are 
needed, as such events are by definition rare. Several studies indicate that the 
probability distribution of extreme events will change as Earth’s climate continues to 
warm. In the case of annual maximum temperature, for example, in many continental-
scale regions the mean shifts to higher temperature and the amplitude of the positive tail 
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of the distribution increases. Probabilities of occurrences of these extremes and the 
return period of specific amplitude extremes can be calculated from these results. 

The Next Frontier: Overcoming Uncertainty and Bias 
in GCMs for Use in Catastrophe Models 
GCMs are powerful tools built for purpose; however, none has been built with the 
catastrophe modeler in mind. While the IPCC’s periodic Assessment Reports speculate 
on the likely increase in precipitation, for example, they are sparing in their commentary 
around the frequency and severity (and regional variation) of convective storms, tropical 
cyclones, and wildfires. 

The central question then is: What confidence do we have in the model results as they 
relate to unobserved extreme events? While we must accept the uncertainties around 
greenhouse gas forcing, which will always have to be handled by scenarios, there are 
ways that we can reduce the spectrum of uncertainties and biases that arises through 
model error and parameterization. Part IV will explore these issues and point to AIR’s 
solution for overcoming them. 

Part IV: Climate Models in a 
Catastrophe Modeling Context: 
Opportunities and Challenges 
Henk Dijkstra, Ph.D., Professor of Dynamical Oceanography, Institute for Marine 
and Atmospheric research, Utrecht; and Director, Centre for Complex Systems 
Studies, Department of Physics, Utrecht University 

Boyko Dodov, Ph.D., Vice President and Director, AIR Worldwide 

Climate Modeling at AIR: A Brief History 
At their inception in the late 1980s, catastrophe models were constructed based largely 
on locally reported observation data. In the case of hurricanes, for example, these data 
might include central barometric pressure at landfall, forward speed, and angle of storm 
track. Probability distributions were fit to the data and simulated events were created by 
randomly drawing storm parameters from these distributions, taking care that the 
resulting draw was deemed physically plausible by meteorologists. It was a purely 
statistical exercise; the construction of these simulated storms was otherwise divorced 
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from the global atmospheric and oceanic flows that give rise to the regional climate 
conditions that spawn and propel actual hurricanes. 

This approach remains quite useful and largely valid for regions of limited domain where 
observational data is abundant and for perils that are physically cohesive and well 
defined, such as hurricanes. It is a less robust approach for regions where data are 
relatively scarce and for more amorphous weather systems characterized by 
considerable internal variability at fine scale—systems that cannot be neatly defined by a 
handful of parameters. Extratropical cyclones and severe thunderstorms are good 
examples of the latter. 

Numerical Weather Prediction (NWP) and Reanalysis 
Data: A Regional Approach 
To overcome the challenges of a purely statistical approach, AIR first introduced climate 
modeling—and, in particular, numerical weather prediction—into the AIR Extratropical 
Cyclone Model for Europe. 

As we learned in Part III, numerical weather prediction (NWP) models are used for 
weather forecasting over relatively short time frames—typically, not more than 14 days. 
Just as the validity of an NWP forecast depends on the accuracy of the inputs, so too 
does the quality of catastrophe model output depend on the quality of the input data. In 
building a large catalog of simulated storms, AIR used NOAA reanalysis data of the 
environmental conditions (sea surface temperature, air temperature, wind speed, 
humidity, and atmospheric pressure) present at the time of roughly 1,500 historical 
"seed" storms affecting Europe over the last 40 years. These storms were then 
perturbed stochastically by employing robust statistical algorithms to create tens of 
thousands of potential future storms. 

One potential limitation of such an approach is that the resulting catalog comprises what 
are, in effect, "siblings" of their historical counterparts. They are different, but the 
approach raises the question of whether we can be confident that we have captured all 
potential extremes. If we perturb the storms too much in an attempt to free ourselves 
from historical constraints, we may end up with results that no longer consistently and 
coherently represent the dynamic nature of the atmosphere. 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/reanalysis
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Figure 7. A historical seed storm is perturbed to create a set of possible realizations of such 
storms. (Source: AIR) 

Another limitation of this approach is that NWP models, which currently run at a 
horizontal resolution of about 10 km, are typically regional in scope; they lack any 
relationship to other regions. Yet we learned from Part II in this series that planetary-
scale motions are the drivers of local weather extremes. 

The Promise of General Circulation Models 
If the goal is to produce global catalogs that capture all types of dependencies—from 
global teleconnections to local correlations across all weather-related perils and across 
all regions—it would seem intuitive that the next step is to use a global general 
circulation model (GCM). Unfortunately, GCMs come with limitations, too. 

While some of the processes in GCMs, as in all numerical models, are based on the 
laws of physics, the primitive equations, which include terms for the conservation of 
mass; a form of the Navier-Stokes equations governing fluid flow; and thermodynamic 
terms, as we discussed in Part III—there are other key processes in the model that are 
approximated, some of which are not based on physical laws. Recall from Part III that 
the "dynamical core" of a GCM is the part of the model that numerically solves the 
equations for wind speed and direction, temperature, humidity, and atmospheric 
pressure. The key to their solution is their spatial and temporal discretization by using 
various numerical methods. Depending on the spatial discretization, there are two major 
types of dynamical cores: (a) spectral, where the discretization is on waves of different 
length (i.e., bands in the frequency spectrum); and (b) gridded, working on spatial grids 
of various geometries. Both types are common in the climate modeling community and 
each has its pros and cons in the representation of the "true" continuous equations. 

Climate processes represented by the dynamical core are referred to as being 
"resolved" by the model, as we discussed in Part III. Because of the relatively coarse 
spatial and temporal resolutions of the GCM grids, however, there are many important 

https://www.grc.nasa.gov/www/k-12/airplane/nseqs.html
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processes in the climate system that occur on scales that are smaller than the model 
resolution and contribute significantly to extreme weather on small scales. Examples 
include thunderstorms, tornadoes, convective clouds, and rainfall (Figure 8). Such 
unresolved sub-grid scale processes are represented by "parameterizations," which are 
simple formulas based on observations or derivations from more detailed process 
models. The parameterizations are "calibrated" or "tuned" to improve the comparison of 
the GCM’s outputs against historical observation, and the parameterization formulas 
employed (which vary with the scientist(s) involved) introduce uncertainty and potential 
bias. 

 
Figure 8. Resolved (dark blue) and unresolved (light blue) phenomena and processes in a GCM. 
(Adapted from Climate Change in Australia.) 

Considering the potential biases introduced by discretization and parameterization, and 
the fact that the equations describing the resolved processes are to a large extent a 
limited view of reality, it is important to stress that GCMs can only approximate the 
physical processes they are designed to represent. While the large-scale dynamics are 
resolved in a GCM, the inaccuracies at smaller scales and their feedback on larger 
scales lead to some of these biases. 

There are more than 20 international climate modeling groups, and there are thousands 
of different choices made in the construction of a GCM (resolution, type of dynamical 
core, complexity of physics parameterizations, etc.). Each set of choices produces a 
different model with different sensitivities and, most importantly, different statistics of the 

https://www.climatechangeinaustralia.gov.au/en/support-and-guidance/using-climate-projections/common-mistakes/
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model output. Furthermore, different climate modeling groups focus on different 
interests—for example, long paleoclimate simulations, details of ocean circulations, 
nuances of the interactions between aerosol particles and clouds, or the carbon cycle. 
Given these different interests and many others, limited computational resources are 
directed toward one aspect of simulating the climate system in each case, at the 
expense of others. 

To date, no GCM has been built to simulate the small-scale processes that produce the 
extreme weather events that the catastrophe modeler is interested in. In fact, most of the 
parameterizations tend to replace highly non-linear natural processes with their 
"average" response. As a result, the natural variability of the climate system tends to be 
lessened, thus missing the extremes. And while the resolution of GCMs has increased 
greatly over the last 10 years, the computational cost of generating very large (million-
year) global catalogs of extreme weather events remains prohibitive. 

Biases in GCMs: Examples 
As we have described, GCMs have strong biases in simulating large-scale atmospheric 
phenomena relevant to the genesis of extreme events. Although visually these 
phenomena may look reasonable in GCMs, their statistics are often incorrect. For 
example, in evaluating the period 1961-2000, GCMs generally underestimate the 
frequency of wintertime blocking events over Europe. (Atmospheric blocks were 
discussed in Part II.) Blocking frequencies at lower latitudes are generally 
overestimated. 

It’s important to note that, despite the inherent model errors and biases, GCMs still do a 
reasonably good job of simulating general climate behavior: storms develop and move in 
realistic ways; temperatures change according to time of day and day of year in realistic 
ways; and precipitation falls where and when it should—generally. But the details—how 
intense storms will become, exactly where they will track or stall, and how heavy the 
precipitation will be—are not captured well enough to satisfy the catastrophe modeler. 

Regarding the polar jet (between 45°N and 50°N), most of the GCM models can 
reproduce seasonal variations of the jet latitude, but many overestimate the amplitude of 
the maximal wind speed. Figure 9 compares the daily mean wind speed in the polar jet 
as simulated by 11 GCM models from the World Research Programme’s Coupled Model 
Intercomparison Project Phase 5 (CMIP5) to historical (reanalysis) data shown in the 
bottom right panel. In most cases, the CMIP5 GCM models produce greater variability 
than the historical. 
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Figure 9. Boxplot of daily mean wind speed (m/s) of the polar jet from simulations of 11 CMIP5 
models over the period 1980-2004 (acronyms above each plot) and historical (reanalysis) data 
over the period 1957-2002 (ERA40 in bottom right panel). (Source: Iqbal, W., Leung, W.-N., and 
Hannachi, A. (2018). Analysis of the variability of the North Atlantic eddy-driven jet stream in 
CMIP5. Climate Dynamics 51:235-247.) 

GCMs also do not provide the necessary detail desired for extreme event forecasting on 
longer time scales, such as the prolonged periods of drought in many parts of Australia 
ahead of and during the bushfire season of 2019-2020. To capture that detail, regional 
general circulation models (RCMs) are often used. As their name would suggest, RCMs 
represent the climate over a limited region (such as Australia), and their resolution is 
typically much higher (down to 1 km) than a GCM’s. These RCMs are connected to 
(nested within) the coarse-resolution GCM at the boundaries of the region. While these 
models provide more detail over the region of interest, the biases from the GCM 
cascade through to the RCMs. A GCM bias in the polar jet, for example, has a large 
effect on the regional atmospheric flow and can destroy the validity of a regional long-
term forecast—in particular, regarding local extreme events. 

In recent years, AIR has employed a hybrid solution for building atmospheric 
catastrophe models, one that nests a regional NWP model within a GCM. The high-
resolution NWP model is connected to the coarser GCM at the boundaries of the region, 
then downscaled to a very high resolution using statistical algorithms followed by local 

https://www.air-worldwide.com/blog/posts/2020/1/how-climate-change-may-have-influenced-the-2019-20-australia-bushfires/
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climatological adjustment. For scientific questions on climate change, the GCM biases 
may not be a serious problem, as one is often interested in the difference between a 
future projection and the current climate simulation. For addressing questions related to 
the occurrence of extreme events, however, these biases pose a problem, as they can 
materially influence the spatio-temporal statistics—the patterns—of these events. Such 
pattern biases are critical in the context of loss occurrence when aggregated at a 
portfolio level. 

Extreme Event Modeling for a Future Climate 
Over the last decade, new ideas to better represent the unresolved sub-grid processes 
that drive extreme weather have emerged, such as stochastic parameterization (a 
probabilistic approach to unresolved processes) and super parameterization (building in 
a simplified high-resolution sub-model for cloud formation, for example). Although these 
approaches may improve the underlying climate model output, they do not provide 
explicit representation of the small-scale processes—a key requirement in a catastrophe 
modeling framework. From a catastrophe modeling perspective, the best approach for 
developing global simulations within which we can model the extremes may be using a 
GCM that has been debiased. 

Some very recent research in the field of machine learning provides a promising solution 
in compensating for the biases introduced by the missing unresolved climate processes 
in a GCM, thus serving as a sophisticated parameterization scheme that can narrow the 
gap and render a coarse GCM output close to the reanalysis at the GCM resolution. 
Similarly, recent attempts have been made to use machine learning in downscaling—
that is, in explicitly simulating unresolved processes in terms of the resolved ones. 
These ideas, when combined, have the potential for being implemented in efficient high-
resolution climate simulations—and they represent the solution that AIR is developing as 
the foundational framework for our atmospheric peril models. They will also be the 
subject of Part V. 
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The challenge for the catastrophe modeler can be simply stated: Simulate extreme but 
relatively localized weather events driven by global atmospheric circulations that obey 
extremely complex physical laws. To meet this challenge, the catastrophe modeling 
industry employs predominantly parametric statistical approaches and perturbations of 
historical events to produce large catalogs of simulated events. For some perils, regional 
numerical models may be employed to generate those perturbations—an advancement 
enabled by recent increases in compute power. Still, we inevitably fall short in 
representing the full complexity and non-linearity inherent in Earth’s weather and 
climate. 

At the other end of the spectrum of ways to meet our challenge are state-of-the-art, high-
resolution Global Circulation Models (GCMs), which come the closest to a realistic 
representation of atmospheric circulation in all its complexity beyond the observed 
climate. Yet, as discussed in Part IV, even the most sophisticated GCM will have 
substantial biases related to the purpose for which it was built—and thus far no GCM 
has been built with the catastrophe modeler in mind. Perhaps even more importantly, 
implementing a state-of-the-art GCM in a catastrophe modeling context is simply 
infeasible because of its computational demands. 

Therefore, we need to meet our challenge with a solution that harnesses the best of both 
approaches. At AIR, we see an opportunity to blend our traditional hybrid physical and 
statistical approaches with a new set of tools that come from the world of artificial 
intelligence—specifically, machine learning. This approach realistically and robustly 
represents the full complexity of atmospheric circulation but does so with computational 
efficiency, enabling us to generate very large catalogs of globally correlated events 
across multiple perils to explore the extreme limits of current and near-future climate. 
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The Contribution of Advanced Machine Learning to 
AIR’s New Framework 
Recent advancements in machine learning for weather and climate applications 
spawned the idea at AIR that emerging deep learning algorithms are the critical link 
between physics and statistics—the link that will enable a consequential upgrade of our 
catastrophe modeling framework. 

Very generally, machine learning (ML) uses a universe of programmed algorithms to 
quickly learn and identify dependencies and rules from data—particularly "big data"—
based on which they can make decisions or predictions that they were not specifically 
programmed to make. The algorithms themselves evolve as they learn. 

The example shown in Figure 10 is very relevant to our framework because the 
equations governing fluid flow for a rising plume of smoke are the same as those 
governing atmospheric motions. The left-hand panel shows a snapshot of a coarse-scale 
physical model output. The right-hand panel is a fine-scale reconstruction, where small-
scale fluctuations are simulated with ML algorithms and added to the coarse simulation 
to create realistic high-resolution model output at low cost. 

 
Figure 10. Interpolated physical model output of a smoke plume (left); a fine scale component of 
the flow is added by physically constrained ML algorithms to create realistic high-resolution 
model output (right). (Source: CS, Cornell University) 

https://www.air-worldwide.com/publications/air-currents/2020/how-machine-learning-is-taking-catastrophe-modeling-to-a-new-level/
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AIR’s new framework builds on similar 
ideas and many years of modeling 
experience with a sophisticated 
approach. It combines a coarse GCM for 
the large scales with advanced ML 
algorithms at fine scales to obtain a 
physically consistent and statistically 
robust (i.e., data-driven) view of global 
risk at low computational cost. It is both 
efficient and purpose-built for catastrophe 
modeling. 

Perhaps the most significant innovation is 
the development of a very specific flavor 
of machine learning algorithm designed 
for fluid flow simulations. The algorithm is 
the result of an ongoing collaboration 
among AIR, the Verisk AI Lab, the 
Massachusetts Institute of Technology, 
the Otto von Guericke University in 
Germany, and the University of Utrecht, 
Netherlands. 

A distinguishing feature of AIR’s deep-
learning algorithm is that it can detect and 
simulate the propagation of waves, 
vortices, and other coherent dynamical 
structures in a fluid, making it ideal for 
atmospheric flow applications. The 
algorithm also learns the joint distribution 
of all output variables as it evolves in time 
as a function of the input variables, 
providing a host of opportunities for 
uncertainty treatment and data assimilation applications in a catastrophe modeling 
context. 

AIR’s New Framework: Combining Three Critical 
Ingredients in a Two-Step Process 
AIR’s new framework for modeling atmospheric perils makes use of machine learning 
trained on reanalysis data to reproduce what would otherwise be computationally 
expensive fine-scale atmospheric circulations as a function of computationally 
inexpensive coarse-scale circulations. This requires three ingredients, or building blocks: 

Flood Modeling: The Current 
State of the Art at AIR 
If the task is to model flood risk over a 
single small river basin, one can use a 
simple statistical model (uniform 
precipitation, for example) to accurately 
represent the local precipitation 
intensity time series. But if the task is to 
simulate events over large river basins 
(such as the Mississippi or Danube), 
which may last for weeks, continental-
scale precipitation needs be integrated 
over space and time. A physical model, 
such as a GCM, is required. 

Currently, most of AIR’s flood models 
rely on a coarse global climate model 
coupled with regional numerical 
weather prediction models, followed by 
statistical downscaling to the resolution 
of a few kilometers. This framework 
does an excellent job at simulating 
precipitation at a continental scale to 
produce robust 10,000-year catalogs. 
With the industry’s growing demand for 
even larger (million-year), globally 
unified, and multi-peril catalogs, 
however, the coupling of global climate 
and NWP models becomes 
computationally too expensive. 
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(1) historical reanalysis data, which serves as a benchmark to debias; (2) a coarse-
resolution GCM with simplified physics; and (3) the cutting-edge machine learning 
algorithm resulting from our ongoing collaboration, as discussed—one specifically 
designed to simulate fluid flow. These three ingredients are combined in a two-step 
process that we discuss in the next section. 

Reanalysis as Benchmark 
Atmospheric reanalysis is a long-standing and ongoing project that uses data 
assimilation techniques to combine all available instrumental observations of past 
weather with simulations from numerical models to produce a complete and statistically, 
physically, and dynamically consistent recreation of the history of Earth’s weather and 
climate. The reanalysis used in the development of AIR’s framework is the ECMWF’s 
ERA5, a fifth-generation reanalysis product covering the period from 1950 to the 
present, at a 0.25⁰ spatial resolution and hourly timestep. 

AIR has divided the data into several frequency (or, conversely, wavelength) bands, 
from fine to coarse scale. The schematic in Figure 11 shows two such bands. These 
bands provide benchmarks for machine learning to determine the dependencies 
between the coarse and fine scales, as well as for debiasing our coarse-scale GCM. 
Note that reanalysis data is characterized by many hundreds of variables. Our goal is to 
resolve the full complexity of atmospheric circulation only in the context of catastrophe 
modeling, so only those weather and climate descriptors relevant to catastrophe models 
need to be considered, making the task more focused. 

 
Figure 11. Illustration of splitting the ERA5 reanalysis data into coarse- and fine-scale frequency 
components. (Source: AIR) 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/reanalysis
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
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Step 1: Debiasing the Coarse-Scale Climate Model 
(GCM) Output 
As just noted and discussed in some detail in Part IV, the currently available state-of-
the-art (high resolution) GCMs are not a good fit for the future of catastrophe modeling, 
both because of their biases and their computational cost. When run at a coarse 
resolution, however, the output from a state-of-the-art climate model is comparable to 
the output from a coarse one with simplified physics. A coarse and simple climate model 
has the advantage of speed; thus, we can use it to generate large catalogs of physically 
based atmospheric flow very quickly. 

But given that these catalogs will be biased, our framework first requires us to debias the 
GCM output to ensure that we’re producing realistic frequencies of atmospheric 
blocking, the polar jet, and other dynamical phenomena, as discussed in Part II. 
Otherwise, we cannot count on getting an unbiased representation of the frequency of 
stalled hurricanes like Sandy and Harvey, prolonged droughts like those ahead of the 
2019-2020 Australia bushfires, or atmospheric rivers like the one that resulted in the 
Great Flood of 1862 that devastated Oregon, Nevada, and California. To do that we 
need to debias the climate model output by benchmarking it to "reality" in the form of the 
coarse-scale component of the reanalysis data (thus pairing the resolutions of the two 
data sets). 

It’s worth pointing out that this first step in our approach is a research project in itself, 
involving the application of cutting-edge machine learning techniques to perform the 
complex and high-dimensional mapping illustrated in Figure 12. This debiasing corrects 
both the local intensities of the model output parameters, as well as the patterns of these 
parameters evolving over time—that is, the atmospheric dynamics. By thus correcting 
the atmospheric dynamics of our simple climate model, we can get storm tracks, for 
example, and their frequency right. At the end, we have a fast-running, albeit still coarse, 
GCM without statistical and dynamical biases in the model output. 



35 Reimagining the Future of Simulating Atmospheric Perils 
©2021 AIR Worldwide 

 
Figure 12. Illustration of the coarse climate model output by "mapping" the dynamics and 
statistics of the model output to the coarse-scale reanalysis data. (Source: AIR) 

Step 2: Learning the Behavior of Fine-Scale Features 
as a Function of the Coarse-Scale Ones 
The second step in the process achieves our goal of effectively replicating the output of 
a state-of-the-art GCM without actually employing one. That is, we reproduce fine-scale 
atmospheric circulations as a function of coarse-scale ones. We describe how we 
achieved this through our deep-learning algorithm in the following paragraphs. 

The reanalysis data split into coarse and fine frequency bands acted as our training 
data, which was fed into the probabilistic machine learning algorithm. The algorithm 
learned two sets of rules from these data: (1) The primary set of rules governed the 
learning of deterministic dependencies—that is, the expectations of the fine-scale 
variables as functions of the coarse-scale ones; (2) the second set of rules is where we 
machine learned the statistics of the residuals of fine-scale variables, after the first set of 
rules was applied. These sets of rules are denoted as (1) ƒML and (2) εML in Figure 13; 
they are the end product of Step 2 in our framework. 
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Figure 13. Application of our ML algorithm resulted in rules governing dependencies (middle) and 
statistics of the residuals (right). (Source: AIR) 

This probabilistic machine-learning framework presents many exciting opportunities for 
using these functions in catastrophe modeling applications. We can employ them to 
quantify hazard uncertainty and create multiple versions of each stochastic event. In the 
context of historical and real-time events, the probabilistic ML framework can also be 
used to more faithfully calibrate the modeled hazard footprints to observations through 
data assimilation. While there are any number of additional benefits that can result from 
this research, our focus in the next section is on combining steps 1 and 2 to build global, 
multi-peril catalogs. 

Combining Steps 1 and 2 into a Robust and Efficient 
Global Simulation of Atmospheric Dynamics 
Recall that in Step 1 we debiased the output of our coarse-scale GCM. Step 2 gave us 
two sets of rules for simulating fine-scale dynamics from the coarse-scale GCM output, 
thus achieving the results of a state-of-the-art GCM but at low cost. Figure 14 illustrates 
how putting the solutions from Step 1 and Step 2 together allows us to efficiently 
simulate large global physics-driven catalogs with realistic dynamics and robust statistics 
at all scales.  

To do that, we plug the adjusted large-scale variables from the simple climate model 
output from Step 1 into the machine-learned sets of rules obtained from Step 2 to 
simulate ensembles of fine-scale time series. We then add the large-scale and the 
ensemble small-scale variables to obtain the final full-scale catalog.  
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Figure 14. Illustration of the implementation sequence: Creation of fine scale-components from 
the adjusted simple climate model output (top row); combining the adjusted simple climate 
model output with the small-scale ensemble to obtain a full-scale ensemble, or catalog (bottom 
row). (Source: AIR) 
 

Next Step: Fundamentally Change How Weather and 
Climate Are Simulated 
The most sophisticated atmospheric peril models available to the insurance industry 
currently rely on perturbations of reanalysis data that are restricted to fine scales. This is 
because perturbing the large scales will make the event footprints unrealistic. Perturbing 
only the small scales, however, results in large-scale patterns that too closely resemble 
historical events, which are then repeated many times over in a stochastic catalog. The 
same would happen to parametric models that use large-scale reanalysis data for 
conditioning—that is, we may never see large-scale patterns capable of producing 
events far more severe than Hurricane Harvey, even though we know they are physically 
possible. Without the ability to explicitly simulate the large-scale patterns, we will never 
understand the probability of occurrence of atmospheric dynamics that give rise to the 
most extreme events—more extreme than historical events and in locations other than 
we’ve observed. 

The new framework under development at AIR will address these issues and will 
fundamentally change the way weather and climate are simulated in the industry. Those 
tasked with managing risk will have access to large, robust global catalogs that capture 
all types of dependencies—from local correlations to global teleconnections and across 
all atmospheric perils, including tropical and extratropical cyclones, floods, severe 
thunderstorms, and droughts. 
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The coarse model output will have the correct frequency and magnitude statistics of 
large-scale phenomena, such as blocking, cyclogenesis, and Rossby waves, as well as 
the fine-scale signatures of tropical cyclones and convective storms. We can use the 
framework such that it can move around such a signature to simulate tropical cyclone 
wind and precipitation. Alternatively, we can train our algorithm with regional reanalysis 
data and add small scale detail to a specific region, such as the U.S., or Japan (Figure 
15). 

 
Figure 15. Illustration of the framework implementation for different geographic regions. (Source: 
AIR) 

Finally, we can leverage the stochastic nature of our catalogs for efficient catalog 
versioning, where the versions can be conditioned on climate change or climate index 
oscillations. Part VI will describe how our new modeling framework can be used to 
provide insights into the potential impacts of climate change on the locations, 
frequencies, and intensities of extreme events. 
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The motivation to create a new paradigm in the way the insurance industry quantifies 
financial risk due to atmospheric perils was straightforward: How can we capture not just 
the physics of local or regional weather systems but also the physics of the larger, 
planetary-scale circulations that often operate on longer time scales and typically have a 
strong influence on the evolution of the small-scale weather phenomena that cause the 
damage? Only by understanding (and modeling) these "climate dynamics" will we 
achieve a robust representation of the most extreme events across multiple regions and 
perils. Not only will we be better positioned to capture atmospheric blocking events—
such as the one that caused Hurricane Harvey to dump more than 50 inches of rain on 
Houston in 2017—but we’ll be able to more confidently estimate the future frequency 
and geographic distribution of Harvey-like events worldwide. Because the physics of the 
atmosphere are not quick to change, models developed using the new framework should 
provide a robust view of risk for a time frame of 10 years or more. 

But it is not only today’s climate dynamics that concern us. The world finds itself at a 
tipping point when scientific investments in addressing climate change can still make a 
material difference. It was therefore important to choose a framework that could also be 
used to evaluate climate change risk on short- and long-term time horizons. 

Moving from the Current to a Future Climate: Short- 
and Intermediate-Term Time Horizons 
Part V described our groundbreaking framework, which blends AIR's current hybrid of 
physical and statistical approaches with machine learning; the result is that we can reap 
the benefits of general circulation models (GCMs) while circumventing their 
computational cost and reducing model bias. The framework makes million-year 
physically based catalogs possible—global catalogs that capture all types of 
dependencies, from global teleconnections to local correlations across all weather-
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related perils and across all regions. For certain perils on which the impact of climate 
change is more certain and quantifiable, such as extreme precipitation, we can make 
explicit adjustments to create forward-looking views. 

But how do we make the leap from modeling the current climate to a future one? AIR's 
machine learning algorithm is trained on reanalysis data. While these data represent a 
statistically, physically, and dynamically consistent recreation of the history of Earth's 
weather and climate, they are, in the end, historical data. One solution is to create a 
climate change–conditioned catalog by subsampling from the inventory of simulated 
years (samples) that comprise the catalog representing the current climate. We are 
currently using a subsampling strategy in many of our climate change studies using 
existing AIR models. It is an approach that, for a couple of reasons, is particularly 
appropriate for short- to intermediate-term time horizons (10 to 30 years into the future). 
First, anthropogenic warming is happening slowly; this means that a climate influenced 
by it will likely not differ so much from the current one for at least the next one to three 
decades. Second, the new framework will produce a catalog large enough to enable us 
to choose a sufficient number of samples that could occur in a short-term time horizon, 
albeit with event frequencies representative of a climate change "target"—that is, a 
selected future year given a selected greenhouse gas emissions scenario, or RCP. 

There are, of course, some differences between using our existing models and using the 
global catalog produced by our new framework to subsample a climate change–
conditioned catalog. For the studies AIR has conducted to date, the future climate 
catalogs are, like our models, peril- and region-specific. Thus, in creating a climate 
change target, one has only to be concerned with how a single peril (and associated 
sub-perils) may change over a single region, such as a country, ocean basin, or 
continent, but not the entire planet. While there may be a temptation to subsample by 
randomly selecting individual events that are reflective of our target, the end result may 
not be physically consistent. For example, it may not make sense to draw hurricane 
events from both positive and negative Atlantic Multidecadal Oscillation (AMO) indices 
and combine them in the same year. More combinations that are similarly egregious 
could also result. 

It thus makes more sense to draw entire years at a time so that global teleconnections 
are preserved, although this is also not without complication. For example, currently 
observed intra-annual correlations between Atlantic hurricane activity and winter storm 
activity over Europe might be different in a future climate. Because our strategy would 
only apply to short- to intermediate-term time horizons, however, that will likely not be 
the case. The tremendous advantage of the new global catalog is that it would represent 
the relevant parts of the actual physics of the atmosphere. Thus, in specifying a climate 
change target for one region and one peril, the other perils for other regions would, by 
default, appropriately reflect the climate impact as well. 

https://www.air-worldwide.com/blog/posts/2019/11/climate-change-rcps-and-the-emissions-gap/
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In addition to creating climate change–conditioned catalogs to reflect short- to 
intermediate-term climate change targets, subsampling can also be used to reflect 
climate variability for future climate scenarios. For example, we could create an Atlantic 
hurricane catalog that reflects the impact of the La Niña phase of the El Niño–Southern 
Oscillation (ENSO) in conjunction with a positive AMO index, without first having to 
determine the change in hurricane frequency and then drawing years. That’s because, in 
our new catalog, large-scale circulations would already be consistent with particular 
phases of climate oscillations. Indeed, each year in the catalog could be tagged with 
corresponding indices for a variety of climate oscillations/signals. Presumably, the 
appropriate hurricane frequencies, intensities, trajectories, etc., would then be captured 
as well. 

One other way that subsampling can be used with the new model is that after the 
"current climate" version of the model has been in operation for 10 years or so, the 
extent to which climate change has had an influence on weather systems can be 
evaluated in much the same way AIR does it now—by analyzing historical data for 
physical (and statistically significant) trends to quantify the climate change effect. We 
can then compare the new current climate to the one that the model represents from 10 
years or so ago. If we see signals—e.g., storm tracks are showing systemic changes—
we can dive into our superset of events and subsample annual seasons that reflect the 
changes in underlying conditions. This is not an easy task, but relative to current practice 
we have a physical basis to conditionally create a new set of event simulations. This 
approach is sustainable for many years, circumventing the need to build a new model 
almost from scratch. 

Moving from the Current to a Future Climate: Longer-
Term Time Horizons 
At some point, though, we will likely have to revisit building a new model almost from 
scratch. In Part V, we described the key components of our new framework as being: 1) 
a coarse resolution general circulation model (GCM) debiased to represent the observed 
climate; 2) a source of high-resolution information representing fine-scale weather 
features, and; 3) a machine learning algorithm trained on the second component to 
"learn" how fine-scale weather features depend on coarse-scale ones; the rules and 
dependencies learned are used to debias the GCM. For the model representing the 
current climate, the second component is reanalysis data. 

To simulate a future climate, the coarse-resolution physics-based component could still 
be provided by a GCM, but one that is simulating a future climate. Any one of the models 
from the Coupled Model Intercomparison Project Phase 5 or 6 would be suitable. But 
what of the second component? Reanalysis data, which is in essence observational, can 
be thought of as "ground truth" (ocean and atmosphere truth, as well). But there is no 
ground truth for a future climate; the observations don’t yet exist. 

https://www.wcrp-climate.org/wgcm-cmip
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Hope is not lost, however, if we assume that the bias that exists under current climate 
conditions between the reanalysis (ground truth at fine scale) and the GCM (modeled 
truth at coarse scale) is the same for the future climate. For example, if the model runs 
0.2° Celsius too warm for the historical period, can we reasonably assume that it will 
continue to run 0.2° Celsius too warm in the future? The answer is yes. This is a typical 
strategy employed by thousands of climate scientists: evaluate impacts from climate 
change by considering the delta(s) between future and current climate GCM runs to 
make statements such as, "Model X shows that, under RCP 4.5, global atmospheric 
temperatures will increase by 2° Celsius." 

In the absence of reanalysis data, however, the same GCM output used to define the 
coarse-scale component of our framework must also be the source of the fine-scale 
information. Ideally, we would want the same high-resolution output as we do for 
historical reanalysis data covering about the same length of time. That means having 40 
years’ worth of future climate GCM output at a resolution of 30 km. 

At this point one might ask why, if we have that kind of future GCM output, would we 
even need to build a future climate version of our new framework? The answer is the 
same as for the present climate. Forty years’ worth of data is simply not enough to 
capture the full range of possibilities that might occur under that climate. It is the whole 
motivation for generating 10K, 100K, or even million-year catalogs. Indeed, it is the 
whole motivation for catastrophe modeling. But while generating 40 years’ worth of high-
resolution future GCM output may well be computationally inexpensive in 10 years, that 
will likely not be the case for generating 10K or 100K (or more) years of such data. The 
promise of AIR’s new modeling framework is that it circumvents these costs while taking 
care of any biases. 

Our second assumption is that the dependencies between the coarse and fine scales 
identified by our machine learning algorithm for the current climate also hold true for the 
future climate. This allows us to, in effect, back out "future reanalysis" data. We can 
assume, for example, that if there is a large-scale high-pressure ridge over the U.S. 
Pacific Northwest and deep low pressure over Nova Scotia in winter, then the possibility 
exists for a powerful Nor’easter to impact the eastern U.S. Again, it’s a reasonable 
assumption. The Nor’easter may have a different strength in the future than it does in the 
current climate, it may move faster or more slowly, and the pattern may have a different 
frequency, but the basic configuration/orientation of large- and small-scale features 
should be the same. Any biases in the small-scale future climate GCM output may be 
corrected by using information obtained by comparing reanalysis data with high-
resolution GCM output from a high-resolution re-simulation of the historical climate. 

It’s important to note that once we begin evaluating longer-term (>30 years) climate 
change impacts using our new framework, we must be circumspect. We should not read 
more into the data than is there or overextend the state of science. It is easy to be 
seduced by solutions that offer false precision, even while knowing that consensus in the 
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scientific community is transient at best, particularly as it relates to the impact of climate 
change on individual atmospheric perils. 

The Way Forward: Building a GCM that Captures 
Extreme Events Under Future Climate Conditions 
While we may have solved our problem conceptually, much has yet to be done. When 
we undertook this project nearly two-and-a-half years ago, the goal was to create a 
model that would, for the first time, capture the planetary-scale atmospheric waves that 
can drive small-scale local extremes under current climate conditions. When complete, 
the model will be physically consistent across multiple regions and perils, so 
stakeholders can evaluate the global risk to their assets and portfolios for the next 10 
years. It is also worth noting that in a time horizon of up to 10 years, the occurrence of 
extreme events will be driven more by natural climate variability than by 
climate change—a circumstance that will continue to be the case in future decades. 
Each new decade of data on climate variability, which would be used to update the 
model, would include the effects of climate change that have already taken place. 

But it has become increasingly apparent over the last couple of years that clients want 
that kind of knowledge now to make business decisions at longer time horizons. Just as 
we have engaged in a collaborative effort with the scientific community to build a current 
climate version of our new model, so too will we likely need to rely on support from the 
community on a grander scale. Right now, AIR is ahead of the curve, but as new studies 
are conducted and published by academia and other research organizations, we will 
assimilate the findings and capabilities into our evolving plan to build a global climate 
model that captures extreme weather events from different perils in different locations 
under future climate conditions. At AIR, we are confident that our new framework will 
serve a multitude of purposes on a multitude of time scales. 

  

https://www.air-worldwide.com/blog/posts/2017/6/climate-variability-vs--climate-change-whats-the-difference/
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